Competing C–Br and O–NO Photofission upon Excitation of BrCH₂CH₂ONO at 193 nm

Lei Wang, Preston G. Scrape, Trevor D. Roberts, Prakriti P. Joshi, and Laurie J. Butler*

The James Franck Institute and Department of Chemistry, The University of Chicago, Chicago, Illinois 60637 United States

Supporting Information

ABSTRACT: This study characterizes two of the primary photodissociation channels of 2-bromoethyl nitrite, BrCH₂CH₂ONO, at 193 nm and the subsequent unimolecular dissociation channels of the nascent vibrationally excited BrCH₂CH₂O radicals produced from the O–NO bond photofission. We use a crossed laser-molecular beam scattering apparatus with electron bombardment detection. Upon photodissociation of BrCH₂CH₂ONO at 193 nm, the measured branching ratio between primary O–NO photofission and C–Br photofission is 3.9:1 (O–NO/C–Br). The measured O–NO photofission recoil kinetic energy distribution \((P(E_R)) \) peaks near 30 kcal/mol and extends from 20 to 50 kcal/mol. We use the O–NO photofission \((P(E_R)) \) to characterize the internal energy distribution in the nascent ground-electronic-state BrCH₂CH₂O radicals. At 193 nm, all of the BrCH₂CH₂O radicals are formed with enough internal energy to unimolecularly dissociate to CH₂Br + H₂CO or to BrCH₂CHO + H. We also investigated the possibility of the BrCH₂CH₂O → CH₂CHO + HBr reaction arising from the vibrationally excited BrCH₂CH₂O radicals produced from O–NO primary photodissociation. Signal strengths at HBr*, however, demonstrate that the vinoxy product does not have HBr as a cofragment, so the BrCH₂CH₂O → HBr + vinoxy channel is negligible compared to the CH₂Br + H₂CO channel. We also report our computational prediction of the unimolecular dissociation channels of the vibrational excited CH₂CH₂ONO radical resulting from C–Br bond photofission. Our theoretical calculations on the ground-state CH₂CH₂ONO potential energy surface at the G4//B3LYP/6-311++G(3df,2p) level of theory give the energetics of the zero-point corrected minima and transition states. The lowest accessible barrier height for the unimolecular dissociation of CH₂CH₂ONO is a 12.7 kcal/mol barrier from the cis-ONO conformer, yielding NO₂ + ethene. Our measured internal energy distribution of the nascent CH₂CH₂ONO radicals together with this computational result suggests that the CH₂CH₂ONO radicals will dissociate to NO₂ + ethene, with a small possible branching to NO + oxirane.

1. INTRODUCTION

The formation of nitric oxide (NO) and its subsequent conversion to nitric acid is of significant environmental concern in atmospheric chemistry due to the latter’s role in acid rain and its depletion effect on the ozone layer.¹ Alkyl nitrites (RONO, where R represents an alkyl moiety) have been shown to be a potential source of nitric oxide (NO) in the atmosphere. Interest in characterizing these important phenomena has led to previously reported studies on nitrous acid (HONO),²⁻⁵ methyl nitrite (CH₃ONO),⁶⁻¹⁰ and tert-butyl nitrite ((CH₃)₃CONO)¹¹⁻¹⁴ photodissociation at a few different wavelengths. Several studies have focused on characterizing the photodissociation of alkyl nitrates. O–NO bond fission has been well studied near the 350 nm absorption band assigned to the \(S_0 \) → \(S_1 \) transition and near the 200 nm absorption band assigned to the \(S_0 \) → \(S_2 \) transition.¹⁵ The photodissociation of CH₃ONO, as a prototype, through the \(S_1 \) state represents an indirect process.¹⁶ The potential energy surface of the \(S_1 \) state has a shallow minimum above the ground-state equilibrium geometry, which has been proven experimentally and theoretically. However, excitation in the 200 nm absorption band reaches a potential energy surface of methyl nitrite, the \(S_2 \) state, that is strongly repulsive along the CH₃O···NO dissociation coordinate leading to a very rapid direct dissociation of the excited molecule.¹⁵

The photodissociation products from halogenated alkyl nitrates may be quite different from those of the well-studied alkyl nitrates described above. The carbon–halogen bond in the halogenated alkyl nitrite may be cleaved photolytically upon excitation at shorter wavelengths. Thus, this study investigates whether the carbon–halogen bond cleavage may compete with primary O–NO photofission upon excitation at 193 nm. In addition, the primary O–NO and C–X (X represents halogen) photofission channels may afford the opportunity to study the subsequent unimolecular dissociation of highly vibrationally excited bromoethoxy and nitrosooxy alkyl radicals. In our present work, 2-bromoethyl nitrite, BrCH₂CH₂ONO, was studied as prototype halogenated alkyl nitrite system.

Special Issue: Dynamics of Molecular Collisions XXV: Fifty Years of Chemical Reaction Dynamics

Received: April 30, 2015
Revised: June 22, 2015
In attempting to characterize the photodissociation of a halogenated alkyl nitrite through the S_1 state mentioned above, in our previous paper, we have reported a study of $\text{BrCH}_2\text{CH}_2\text{ONO}$ photodissociation at 351/355 nm. The only photodissociation channel of the precursor we detected upon photodissociation at 351 nm was $\text{O}−\text{NO}$ bond fission. $\text{C}−\text{Br}$ photofission and HBr photoelimination do not compete significantly with $\text{O}−\text{NO}$ photofission at this excitation wavelength.

In this work, to further analyze the photodissociation of halogenated alkyl nitrites through the S_1 state, we focus on the primary photodissociation pathways of $\text{BrCH}_2\text{CH}_2\text{ONO}$ at 193 nm as the higher photon energy may induce $\text{C}−\text{Br}$ bond fission in $\text{BrCH}_2\text{CH}_2\text{ONO}$ upon 193 nm excitation. This is possible because excitation at 193 nm excites the molecule both at the ONO chromophore and the $\text{C}−\text{Br}$ chromophore, the latter corresponding to promoting the molecule to an excited state repulsive in the $\text{C}−\text{Br}$ bond. Our present work measures this branching ratio between $\text{C}−\text{Br}$ and $\text{O}−\text{NO}$ primary channels. We also determine the internal energy distributions of $\text{BrCH}_2\text{CH}_2\text{O}$ radicals and $\text{CH}_2\text{CH}_2\text{ONO}$ radicals formed from the $\text{BrCH}_2\text{CH}_2\text{ONO}$ precursor photodissociation at 193 nm using a crossed laser-molecular beam scattering apparatus. We also calculate the energetics of the zero-point corrected minima and transition states on the ground-state $\text{CH}_2\text{CH}_2\text{ONO}$ potential energy surface at the G4//B3LYP/6-311++G(3df,2p) level of theory.

2. METHODS

2.1. Preparation of 2-Bromoethyl Nitrite ($\text{BrCH}_2\text{CH}_2\text{ONO}$). The experimental details relevant to this synthesis have been described previously. Briefly, a 100 mL aqueous solution of sodium nitrite (NaNO_2, 4 M) was prepared in an ice bath. A mixture of 2-bromoethanol ($\text{BrCH}_2\text{CH}_2\text{OH}$, 0.4 mol), concentrated H_2SO_4 (0.2 mol), and deionized H_2O (7 mL) was added dropwise over 20 min with constant stirring. The organic layer of the mixture, 2-bromoethanol ($\text{BrCH}_2\text{CH}_2\text{OH}$), was collected and stored at $−80^\circ\text{C}$ to be used within 2 weeks.

2.2. Experimental Methods: Scattering Apparatus. We use a crossed laser-molecular beam scattering apparatus to measure the photofragment velocities resulting from $\text{O}−\text{NO}$ fission and $\text{C}−\text{Br}$ bond fission in the photodissociation of 2-bromoethyl nitrite, $\text{BrCH}_2\text{CH}_2\text{ONO}$, at 193 nm. The molecular beam is composed of $\text{BrCH}_2\text{CH}_2\text{ONO}$ seeded in helium gas to 600 Torr, using the equilibrium vapor pressure of $\text{BrCH}_2\text{CH}_2\text{O}$ in a $−15^\circ\text{C}$ bath. The continuous molecular beam is expanded through a nozzle with a 0.15 mm diameter orifice heated to 40 °C. The molecular beam source can be rotated to different angles in the plane formed by the molecular beam and the detector axis. The parent beam is characterized at 0° by passing it through a chopper wheel operating at 200 Hz. To measure the velocities of the neutral fragments, we set the source angle to 10°. After supersonic expansion from the nozzle, the beam then passes through two skimmers en route to the main chamber, where it intersects the output of 193 nm unpolarized laser light focused to a ~ 6 mm2 cross-sectional area. The 193 nm light is produced by the ArF transition of an unpolarized Lumonics PM-848 excimer laser and the energy at the crossing region with the molecular beam is 20 mJ/pulse. The laser light propagates along the axis perpendicular to the plane defined by the molecular beam and detector axis.

The neutral fragments scatter with velocities determined by the vector sum of the molecular beam’s velocity and the recoil velocity imparted during the photodissociation. The products with a resultant velocity along the detector axis can be ionized by 200 eV electron bombardment ionization and then mass-to-charge selected by a quadrupole mass filter and detected using a Daly detector. The signal, proportional to the number of ions that strike the Daly detector as a function of time, is counted by a multichannel scaler and accumulated in 2 μs channels. We can determine the neutral flight time by subtracting the calibrated ion flight time (4.5 multiplied by the square root of the detected ion mass) from the total flight time for each photofragment and subsequent products resulting from $\text{C}−\text{Br}$ and $\text{O}−\text{NO}$ fission. The data herein are plotted as a function of neutral flight time.

Beyond the data presented herein, we also looked for signal at $m/e = 74$ ($\text{CH}_3\text{CH}_2\text{ONO}^+$). At $m/e = 74$ ($\text{CH}_3\text{CH}_2\text{ONO}^+$), no signal appeared above the noise at the end of 5×10^3 laser shots. We also detected signal at $m/e = 42$, but present that data in a later paper, as it does not result from the $\text{BrCH}_2\text{CH}_2\text{O}$ radicals.

2.3. Computational Method. Our theoretical calculations on the ground-state $\text{CH}_2\text{CH}_2\text{ONO}$ potential energy surface at the G4//B3LYP/6-311++G(3df,2p) level of theory give the energetics of the zero-point corrected minima and transition states. Details are given in section 3.3. We also computationally characterize the equilibrium geometry of each possible conformer of the photolytic precursor, $\text{BrCH}_2\text{CH}_2\text{ONO}$, their relative energies and the $\text{C}−\text{Br}$ bond energy to form $\text{Br}(^3\text{P}_{1/2})$ and the lowest energy conformer (trans) of $\text{CH}_2\text{CH}_2\text{ONO}$. We use these geometries to model the angular momentum imparted to the recoiling $\text{CH}_2\text{CH}_2\text{ONO}$ radical.

3. RESULTS AND ANALYSIS

3.1. Overview of the Photodissociation Channels of $\text{BrCH}_2\text{CH}_2\text{ONO}$. Our theoretical and experimental results below provide evidence of two primary photodissociation channels, eqs 1 and 2: $\text{O}−\text{NO}$ bond photofission and $\text{C}−\text{Br}$ photofission. The calculated endoergicities are

$$\text{BrCH}_2\text{CH}_2\text{ONO} + h\nu \rightarrow \text{BrCH}_2\text{CH}_2\text{O} + \text{NO}$$
$$\Delta H_{0k} = 39.0 \text{ kcal/mol} \quad (1)$$

$$\text{BrCH}_2\text{CH}_2\text{ONO} + h\nu \rightarrow \text{Br} + \text{CH}_2\text{CH}_2\text{ONO}$$
$$\Delta H_{0k} = 68.7 \text{ kcal/mol} \quad (2)$$

"Primary dissociation" here means the first processes resulting from photodissociation at 193 nm, whereas secondary dissociation processes indicate the subsequent unimolecular dissociation of some of the vibrationally excited photoproducts. In later sections of this paper, we report experimental results on the secondary processes after the $\text{O}−\text{NO}$ primary cleavage, as they are the processes relevant to our investigation of the $\text{BrCH}_2\text{CH}_2\text{O}$ radical intermediate. The secondary processes resulting from $\text{C}−\text{Br}$ photodissociation and the unimolecular dissociation of $\text{CH}_2\text{CH}_2\text{ONO}$ are studied computationally in this paper but the experimental work using tunable VUV photionization detection is ongoing.

3.2. $\text{O}−\text{NO}$ Bond Fission Yielding $\text{BrCH}_2\text{CH}_2\text{O}$ and NO, and Subsequent Dissociation of Vibrationally Excited $\text{BrCH}_2\text{CH}_2\text{O}$. 3.2.1. $\text{O}−\text{NO}$ Bond Primary Photodissociation. The time-of-flight (TOF) spectrum taken at $m/e = 30$ (NO$^-$, H_2CO^-) is shown in Figure 1. The high kinetic energy signal, peaking at arrival times around 110 μs in the spectrum, is the
3.2.2. Internal Energy Distribution of Nascent BrCH₂CH₂O Radicals. One main focus of our study is on the unimolecular dissociation of the momentum-matched BrCH₂CH₂O radicals formed from photofission of the O–NO bond; therefore, the distribution of internal energies in those nascent radicals is of interest. Using energy conservation, we can derive the internal energy distribution in the pair of nascent radicals (NO and BrCH₂CH₂O):

\[
E_{\text{in}}(\text{BrCH}_2\text{CH}_2\text{O}) + E_{\text{in}}(\text{NO}) = h\nu + E_{\text{BrCH}_2\text{CH}_2\text{ONO}} - D_0(\text{O–NO}) - E_T \tag{3}
\]

In eq 3, the 193 nm photon energy, \(h\nu\), is 147.8 kcal/mol; \(E_{\text{BrCH}_2\text{CH}_2\text{ONO}}\) is the internal energy of the BrCH₂CH₂ONO precursor. Assuming the rotational energy of the precursor is effectively cooled in the supersonic expansion, the internal energy of precursor is estimated to be 2.84 kcal/mol in vibrational energy using a thermal distribution at the nozzle temperature of 40 °C. The dissociation energy of the O–NO bond, \(D_0(\text{O–NO})\), is 39.0 kcal/mol, calculated at the G4//B3LYP/6-311++G(3df,2p) level of theory. Subtracting our measured O–NO bond fission recoil kinetic energy, \(E_T\) (with a distribution in Figure 2), the resulting internal energy distribution in the pair of products is shown in the top curve superimposed on a plot of the energetic barriers in Figure 3.

Even though we can determine the internal energy distribution of NO and BrCH₂CH₂O directly by measuring the \(E_T\), one would prefer to know the internal energy distribution of the BrCH₂CH₂O radicals alone because the NO carries away a significant amount of energy in vibration and rotation. To estimate the average amount of vibrational energy in the NO cofragment, we note that the UV absorption spectrum of BrCH₂CH₂ONO has a similar shape and nearly the same maximum (peaking at 216 nm) as that of other alkyl nitrites, particularly CH₂ONO. Thus, we estimate the energy in vibration for our NO product using the vibrational distribution measured by Huber et al.
almost the same as for \(CH_2ONO \) photofission upon excitation in the analogous absorption feature. Therefore, we estimate the average rotational energy of NO to be about 6600 cm\(^{-1}\) on the basis of the rotational energies reported by Huber et al.\(^{18} \)

To summarize, assuming the partitioning of vibrational and rotational energy to the NO cofragment is the same as alkyl nitrite excited in the analogous \(S_2 \) vibrational feature, we can roughly estimate the internal energy distribution of the \(BrCH_2CH_2O \) radicals alone shown by the lower curve in Figure 3. The estimated internal energy distribution is superimposed on the calculated barriers to the dissociation of the \(BrCH_2CH_2O \) radical. As only the average internal energy in the NO cofragment has been accounted for, the actual internal energy distribution would be somewhat broader than the lower curve shown in Figure 3. But it is clear that the internal energy distribution of the \(BrCH_2CH_2O \) radicals allows all of the \(BrCH_2CH_2O \) radicals to subsequently dissociate to \(CH_2Br + H_2CO \) and other secondary dissociation channels.

3.2.3. \(CHBr_2 + H_2CO \) from the Dissociation of Vibrationally Excited \(BrCH_2CH_2O \) Radicals. The \(BrCH_2CH_2O \) radicals that are formed in conjunction with NO are formed with enough vibrational energy to surmount the dissociation barrier to \(CH_2Br + H_2CO \) products. A fit of the signal observed at \(m/e = 93 \) (CHBr\(^{3}\)) is shown in Figure 4. The contributions to that spectrum include CHBr\(^{2}\) products formed from secondary dissociation of unstable vibrationally excited \(BrCH_2CH_2O \) radicals, formed with enough internal energy to surmount the barrier to \(CH_2Br + H_2CO \). That signal is fit as the purple line. The signal from clusters is fit as the gray line. To derive the distribution of relative kinetic energies \(P(E_{T,2}) \) when the \(BrCH_2CH_2O \) radicals dissociate to \(CH_2Br + H_2CO \) from our data, we use the entire O−NO bond fission \(P(E_{T}) \) in Figure 2 to determine the velocity of the radicals that dissociate and then iteratively adjust the distribution of relative kinetic energies \(P(E_{T,2}) \) when the \(BrCH_2CH_2O \) radicals dissociate to \(CH_2Br + H_2CO \) to model the additional velocity imparted to the CHBr\(^{2}\) product. The fit shown as the purple line in Figure 4 was calculated from the primary \(P(E_{T}) \) in Figure 2 and the secondary \(P(E_{T}) \) in Figure 5 with an isotropic \(I(\theta) \) for the distributions of angles between the velocity vector of the dissociating radical and the additional velocity imparted to the radical as it dissociates. The contribution fit as the solid gray line is attributed to the photodissociation of clusters, and so is fit with the same speed distribution as the signal from clusters in Figure 1.

Figure 3 includes a post-publication correction

Figure 3. Internal energy distribution for nascent ground-state \(BrCH_2CH_2O \) radicals formed in the photodissociation of \(BrCH_2CH_2ONO \) at 193 nm. The upper curve, labeled \(E_{int}(BrCH_2CH_2O) + E_{int}(NO) \), is derived directly, using eq 3 in the text, from the major component of the O−NO photofission \(P(E_{T}) \) peaking near \(E_{T} = 30 \) kcal/mol shown in Figure 2. The lower curve, which subtracts off the estimated average internal energy of 30 kcal/mol in the NO cofragment, peaks near an internal energy of 52 kcal/mol in the nascent \(BrCH_2CH_2O \) radicals.

Figure 4. Time-of-flight spectrum of the signal at \(m/e = 93 \) (CHBr\(^{3}\)). The data are shown in open circles, and the overall fit is the sum of two contributions. The contributions shown as the solid purple line are assigned to CHBr\(^{2}\) products formed from secondary dissociation of unstable vibrationally excited \(BrCH_2CH_2O \) radicals formed with enough internal energy to surmount the barrier to \(CH_2Br + H_2CO \). We use the O−NO bond fission \(P(E_{T}) \) in Figure 2 to determine the velocity of the radicals that dissociate and then iteratively adjust the distribution of relative kinetic energies \(P(E_{T,2}) \) shown in Figure 5 when the \(BrCH_2CH_2O \) radicals dissociate to \(CH_2Br + H_2CO \) to model the additional velocity imparted to the CHBr\(^{2}\) product with an isotropic \(I(\theta) \) for the distribution of angles between the velocity vector of the dissociating radical and the additional velocity imparted to the radical as it dissociates. The contribution fit as the solid gray line is attributed to the photodissociation of clusters, and so is fit with the same speed distribution as the signal from clusters in Figure 1.

Figure 5. Recoil kinetic energy distribution \(P(E_{T,2}) \) for the dissociation of \(BrCH_2CH_2O \) radicals to \(CH_2Br + H_2CO \). The \(P(E_{T,2}) \) (purple dashed line) is derived from the forward convolution fitting of the broad purple peak in the \(m/e = 30 \) (NO\(^{+}\)) signal in Figure 1 to determine the velocity of the radicals that dissociate and then iteratively adjust the distribution of relative kinetic energies \(P(E_{T,2}) \) when the \(BrCH_2CH_2O \) radicals dissociate to \(CH_2Br + H_2CO \) to model the additional velocity imparted to fit the CHBr\(^{2}\) signal shown with a purple line in Figure 4. The distribution of angles, \(I(\theta) \), is isotropic between the velocity vector of the dissociating radical and the additional velocity imparted to the radical as it dissociates.
dissociating radical and the additional velocity imparted to the radical as it dissociates.

To confirm the signal from the dissociation of the BrCH$_2$CHO radicals to CH$_3$Br + H$_2$CO products, we also identify signals from the momentum-matched formaldehyde (H$_2$CO) products formed when the BrCH$_2$CHO radicals dissociate to CH$_3$Br + H$_2$CO in the $m/e=30$ spectrum shown in Figure 1. To fit the same contribution to the $m/e=30$ (H$_2$CO$^+$) TOF spectrum in Figure 1 taken in our crossed laser-beam scattering apparatus, we also used the $P(E_t)$ shown in Figure 2 and the secondary kinetic energy distribution $P(E_{T,2})$ shown in Figure 5 predicted from fitting $m/e=93$ (CH$_3$Br$^+$) TOF spectrum.

We also note that formaldehyde (H$_2$CO) can be dissociatively ionized to form CHO$^+$ upon high-energy (200 eV) electron bombardment ionization; this can confirm the presence of the CH$_3$Br + H$_2$CO channel. In the signal at $m/e=29$ (CHO$^+$) shown in Figure 6, the major contributions to that spectrum include H$_2$CO products formed from secondary dissociation of those unstable vibrationally excited BrCH$_2$CHO radicals (solid purple line), (2) dissociative ionization of BrCH$_2$CHO resulting from secondary dissociation of the unstable vibrationally excited BrCH$_2$CHO radicals (solid blue line), and (3) signal from the photodissociation of clusters (solid gray line). We use the O–NO bond fission $P(E_t)$ in Figure 2 to determine the velocity of the BrCH$_2$CHO radicals that dissociate (assuming they are formed throughout the entire recoil energy distribution) and the distribution of relative kinetic energies $P(E_{T,2})$ shown in Figure 5 when the BrCH$_2$CHO radicals dissociate to CH$_3$Br + H$_2$CO to model the additional velocity imparted to the CH$_2$O product.

Figure 6. Time-of-flight (TOF) spectrum taken at $m/e=29$ (CHO$^+$). The three contributions to the signal include (1) dissociative ionization of CH$_2$O resulting from secondary dissociation of the unstable vibrationally excited BrCH$_2$CHO radicals (solid purple line), (2) dissociative ionization of BrCH$_2$CHO resulting from secondary dissociation of the unstable vibrationally excited BrCH$_2$CHO radicals (solid blue line), and (3) signal from the photodissociation of clusters (solid gray line). We use the O–NO bond fission $P(E_t)$ in Figure 2 to determine the velocity of the BrCH$_2$CHO radicals that dissociate (assuming they are formed throughout the entire recoil energy distribution) and the distribution of relative kinetic energies $P(E_{T,2})$ shown in Figure 5 when the BrCH$_2$CHO radicals dissociate to CH$_3$Br + H$_2$CO to model the additional velocity imparted to the CH$_2$O product.

to that spectrum include H$_2$CO products formed from secondary dissociation of those unstable vibrationally excited BrCH$_2$CHO radicals, fit as the purple line, and signal from clusters, fit as the gray line. For the first contribution, we used the blue line $P(E_t)$ shown in Figure 2 and the secondary kinetic energy distribution $P(E_{T,2})$ shown in Figure 5 predicted from fitting the $m/e=93$ (CH$_3$Br$^+$) TOF spectrum. For completeness, Figure 6 also shows, as the blue line, a possible signal from dissociative ionization of the BrCH$_2$CHO fit (see next section).

3.2.4. H + BrCH$_2$CHO from the Dissociation of Vibrationally Excited BrCH$_2$CHO Radicals. The internal energy distribution of the BrCH$_2$CHO radicals shown in Figure 3 is high enough to allow BrCH$_2$CHO radicals to dissociate to H + BrCH$_2$CHO (in addition to the major CH$_3$Br + H$_2$CO channel); thus, signal from this channel is expected. Because of the large mass ratio between BrCH$_2$CHO and H, the velocity of the resulting BrCH$_2$CHO molecule is approximately the same as the velocity of the BrCH$_2$CHO radical that underwent C–H fission. Therefore, the speed of the BrCH$_2$CHO fragment in this secondary dissociation should be well predicted by only the primary $P(E_t)$ shown in Figure 2. However, BrCH$_2$CHO does not give signal for the parent ion due to the high-energy (200 eV) electron bombardment ionization but instead was dissociatively ionized to give small signals fit as the solid blue line for the CHO$^+$ ion (Figure 6), HBr$^+$ ion (Figure 7), and Br$^+$ daughter ion (Figure 8). Dissociative ionization at $m/e=42$ is reported in a publication in preparation, as some of the signal in the spectrum is from a channel not reported here.

3.2.5. Absence of the HBr + Vinoxy Channel from the Dissociation of BrCH$_2$CHO Radicals. On the basis of the theoretical prediction of the barrier energies on the BrCH$_2$CHO potential energy surface, one would estimate the probability of secondary dissociation to HBr + vinoxy from vibrationally excited BrCH$_2$CHO radicals to be small. The calculated barrier of 39 kcal/mol is much larger than the 16 kcal/mol barrier en route to the H$_2$CO + CH$_3$Br product channel. The signal at $m/e=82$ (HBr$^+$) shown in Figure 7 is barely observable after 8.47 million shots despite the fact that the electron bombardment cross section of HBr is relatively large. For completeness, we show three possible small contributions to fit the tiny signal: dissociative ionization of BrCH$_2$CHO formed from the minor unimolecular dissociation channel of the BrCH$_2$CHO radical to BrCH$_2$CHO + H fit as the solid blue line; dissociative ionization of CH$_3$Br formed from the major unimolecular dissociation channel of the BrCH$_2$CHO radical to CH$_3$Br + H$_2$CO fit as the solid purple line; dissociation of clusters as the solid gray line. There is no apparent contribution from the unimolecular dissociation of BrCH$_2$CHO to HBr + vinoxy. Therefore, we conclude the HBr + vinoxy secondary channel is negligibly small.

Figure 7. Time-of-flight spectrum of the signal at $m/e=82$ (HBr$^+$). The data are shown as open circles. Virtually no signal is apparent, but for completeness we show the flight time of three possible contributions to the spectrum: dissociative ionization of BrCH$_2$CHO to HBr$^+$ (solid blue line) and dissociative ionization of CH$_3$Br radicals from secondary dissociation from BrCH$_2$CHO radicals to CH$_3$Br + H$_2$CO (solid purple line) and clusters (solid gray line).
Figure 8. Time-of-flight (TOF) spectrum taken at \(m/e = 79\) (Br\(^+\)). Four contributions to the spectrum include Br products formed from primary C–Br bond fission from the precursor (orange line), Br\(^+\) from the dissociative ionization of CH\(_3\)Br resulting from secondary dissociation of the unstable vibrationally excited BrCH\(_2\)CHO radicals (solid purple line), signal from the dissociative ionization of bromoacetaldehyde BrCH\(_2\)CHO from secondary dissociation of the BrCH\(_2\)CHO radicals (solid blue line), and signal from cluster photodissociation (solid gray line). The high kinetic energy signal fit by the orange line, peaking at an arrival time near 180 \(\mu s\) in the spectrum, is the Br photoproduct from primary C–Br bond fission of the precursor. For the second contribution, we use the O–NO bond fission \(P(E_f)\) in Figure 2 to determine the velocity of the radicals that dissociate and the distribution of relative kinetic energies \(P(E_{k1})\) shown in Figure 6 when the BrCH\(_2\)CHO radicals dissociate to CH\(_2\)Br \(+\) H\(_2\)CO to model the additional velocity imparted to the CH\(_2\)Br product. The contribution fit as the solid blue line from the dissociative ionization of BrCH\(_2\)CHO is derived from the \(P(E_f)\) in Figure 2.

Moreover, we note that HBr would be also dissociatively ionized to Br\(^+\) upon 200 eV electron bombardment ionization. In the \(m/e = 79\) (Br\(^+\)) TOF spectrum shown in Figure 8, there is no apparent contribution from dissociatively ionized HBr after secondary dissociation from BrCH\(_2\)CHO nascent radicals to HBr + vinoxy photoproducts.

3.3. C–Br Photodissociation Yielding CH\(_2\)CHO + Br and Theoretical Prediction of Nascent CH\(_2\)CHOONO Unimolecular Decomposition. 3.3.1. Primary Photodissociation of BrCH\(_2\)CHO to CH\(_2\)CHO + Br. Previous studies of BrCH\(_2\)CHO at 351 nm \(^{17}\) focused heavily on the unimolecular decomposition pathways of the momentum matched BrCH\(_2\)CHO radical formed from the photofission of the O–NO bond. This study of BrCH\(_2\)CHO at 193 nm allows us to study a different photofission-generated radical, the CH\(_2\)CHOONO radical. This is possible because excitation at 193 nm excites the molecule both at the O–NO chromophore and the C–Br chromophore, the latter corresponding to promoting the molecule to an excited state repulsive in the C–Br bond.

The time-of-flight (TOF) spectrum taken at \(m/e = 79\) (Br\(^+\)) is shown in Figure 8. Four contributions to that spectrum include Br products (orange line) formed from primary C–Br bond fission of the precursor, dissociative ionization from CH\(_3\)Br (purple line) resulting from secondary dissociation of the unstable vibrationally excited BrCH\(_2\)CHO radicals and dissociative ionization of BrCHO (blue line) from the BrCH\(_2\)CHO \(+\) H secondary channel and clusters (gray line). The high kinetic energy signal shown as the orange line, peaking at arrival times around 180 \(\mu s\) in the spectrum, is the Br photoproduct from primary C–Br bond fission of the precursor. We use forward convolution fitting of the fast peak near 180 \(\mu s\) to derive the C–Br bond fission recoil kinetic energy distribution \(P(E_f)\), shown as the dashed orange line in Figure 9. It peaks near 28 kcal/mol in relative kinetic energy.

Figure 9. Total recoil kinetic energy distribution, \(P(E_f)\), of the Br and CH\(_2\)CHOONO resulting from C–Br bond fission in the photodissociation of BrCH\(_2\)CHOONO at 193 nm. The \(P(E_f)\) (orange dashed line), peaking near 28 kcal/mol, is derived from the forward convolution fitting of the fast peak in the \(m/e = 79\) (Br\(^+\)) signal in Figure 8.

To fit the signal from dissociative ionization of CH\(_3\)Br, we used the \(P(E_f)\) shown in Figure 2 and the secondary kinetic energy distribution \(P(E_{k2})\) predicted from fitting the \(m/e = 93\) (CH\(_3\)Br\(^+\)) TOF spectrum shown in Figure 5 in conjunction with an isotropic \(I(\theta)\) for the distributions of angles between the velocity vector of the dissociating radical and the additional velocity imparted to the radical as it dissociates. The fit to the signal from dissociative ionization of stable BrCH\(_2\)CHO (blue line) was calculated using the previously determined \(P(E_f)\) in Figure 2, as described in section 3.2.4.

3.3.2. Theoretical Prediction of Nascent CH\(_2\)CHOONO Unimolecular Decomposition. We are interested in the internal energy distribution of nascent CH\(_2\)CHOONO (2-nitrosooxy ethyl) radicals and their relevant unimolecular decomposition pathways, so we used electronic structure theory to predict the barriers and minima along several possible ground-state dissociation pathways of the radical. Our theoretical calculations on the ground-state CH\(_2\)CHOONO potential energy surface at the G4//B3LYP/6-311++G(3df,2p) level of theory give the energetics of the zero-point corrected minima and transition states shown in Figure 10. Depending on the geometric conformations of the initial photolytic precursor, BrCH\(_2\)CHOONO, the primary C–Br photodissociation event may yield vibrationally and rotationally excited CH\(_2\)CHOONO radicals in one of two conformers: a trans or a cis conformer in the C–ONO moiety. The channel with the lowest barrier is actually an isomerization channel from the trans-CH\(_2\)CHOONO radical conformer to the cis CH\(_2\)CHOONO radical conformer by surmounting a barrier of 11.4 kcal/mol. Other barrier heights of interest concern unimolecular dissociation product channels and isomerization channels leading toward dissociation products. Should the CH\(_2\)CHOONO radicals have enough internal energy, a 12.7 kcal/mol barrier may be surmounted.
along the intrinsic reaction coordinate (IRC) from the cis CH$_2$CH$_2$ONO radical to the CH$_3$CH$_3$ (ethene) + NO$_2$ product asymptote. Another pathway from the cis CH$_2$CH$_2$ONO conformer is the competitive 23.3 kcal/mol barrier along the CH$_2$NH$_2$ asymptote. Another pathway from the cis CH$_2$CH$_2$ONO radicals superimposed on a plot of the energetic barriers the radical must surmount to undergo subsequent isomerization and dissociation. We derived the C–Br fission E_T through a forward convolution fit to the $m/e = 79$ 81Br$^+$ time-of-flight spectrum and momentum matching to the CH$_2$H$_2$ONO radical to generate said C–Br bond fission recoil kinetic energy, E_T, and apply this relative translational energy distribution, $P(E_T)$, directly to our conservation of energy equation:

$$E_{\text{int}}(\text{CH}_2\text{H}_2\text{ONO}) + E_{\text{int}}(\text{Br}) = h\nu + E_{\text{BrCH}_2\text{H}_2\text{ONO}} - D_0(\text{C} - \text{Br}) - E_T$$ (4)

In eq 4, the 193 nm photon energy, $h\nu$, is 147.8 kcal/mol; the dissociation energy of the C–Br bond, the value of D_0(C–Br) for each conformer, is shown in Table 1, calculated at the G4/B3LYP/6-311++G(3df,2p) level of theory. $E_{\text{BrCH}_2\text{H}_2\text{ONO}}$ is the internal energy of the BrCH$_2$H$_2$ONO photolytic precursor—we assume the rotational energy of the precursor is effectively cooled in the supersonic expansion and the vibrational energy is estimated by a thermal distribution, with an average 2.84 kcal/mol, at the nozzle temperature of 40 °C. The final parameter of eq 4, E_{int}(Br), is the internal energy of recoiling bromine atoms, as they may be formed in either the ground Br($^3P_{3/2}$) or the excited Br($^3P_{1/2}$) spin–orbit state, which differ in energy by 10.5 kcal/mol. Bromine atoms in the Br($^3P_{1/2}$) spin–orbit state are 10.5 kcal/mol higher in energy than bromine atoms in the Br($^3P_{3/2}$) spin–orbit state.

The upper frame in Figure 10 shows our estimate of the internal energy distributions of CH$_2$H$_2$ONO radicals superimposed upon the ground-state potential energy surface with zero-point corrected minima and transition states along pathways toward isomerization and unimolecular dissociation. The two internal energy distributions shown reflect the fact that we have not determined the spin–orbit state of the Br atom coproduct. If the Br atom is formed in the ground spin–orbit state Br($^3P_{3/2}$), then the CH$_2$H$_2$ONO radicals would have the higher internal energy distribution shown in Figure 10. This internal energy of CH$_2$H$_2$ONO is partitioned between rotational and vibrational energy, so some of the radicals with a total internal energy above the dissociation barrier may still be stable to subsequent dissociation due to a relatively larger proportion of rotational energy as a result of conservation of angular momentum.

3.3.4. Vibrational Energy Distribution of Nascent CH$_2$H$_2$ONO Radicals. The C–Br photofission partitions a large amount of energy into rotation of the CH$_2$H$_2$ONO radicals; less energy is then partitioned to vibration of the radicals. Not only does this result in some CH$_2$H$_2$ONO radicals that are stable to the secondary dissociation, but the product branching from the unstable ones is altered by the amount of energy constrained to be rotational energy due to conservation of angular momentum. To estimate this angular momentum, we first use the method discussed in McKown et al. to calculate the distribution, shown in Figure 11, of the magnitude of the angular momentum vectors, $P(J)$, imparted to the nascent CH$_2$H$_2$ONO radicals following the photodissociation in a forward convolution fit to the $m/e = 79$ 81Br$^+$ time-of-flight spectrum and momentum matching to the CH$_2$H$_2$ONO radical to generate said C–Br bond fission recoil kinetic energy, E_T, and apply this relative translational energy distribution, $P(E_T)$, directly to our conservation of energy equation:
Table 1. 2-Bromoethyl Nitrite

<table>
<thead>
<tr>
<th>conformer</th>
<th>skeleton structure</th>
<th>relative energy (kcal/mol)</th>
<th>(D_e (C-Br)) (kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>anti-trans</td>
<td></td>
<td>0.00</td>
<td>68.77</td>
</tr>
<tr>
<td>gauche-trans</td>
<td></td>
<td>0.19</td>
<td>68.57</td>
</tr>
<tr>
<td>anti-cis</td>
<td></td>
<td>0.70</td>
<td>68.07</td>
</tr>
<tr>
<td>gauche-cis</td>
<td></td>
<td>1.34</td>
<td>67.43</td>
</tr>
</tbody>
</table>

*The relative energy of each conformer is with respect to the anti-trans conformer. The bond energy is calculated to form \(Br(^2P_{3/2}) \) and the lowest energy conformer (trans) of \(CH_2CH_2ONO \).

![Figure 11. Angular momentum distribution, \(P(J) \) distribution for \(trans-CH_2CH_2ONO \) radicals produced from each of the four conformers of \(BrCH_2CH_2ONO \). The distributions peak at 190, 260, 320, and 330 au, respectively, indicating that a large rotational energy is imparted to the nascent radicals. The distributions are convolved over all possible internal energies of the parent molecule, and over all possible translational energies from the experimentally determined \(P(E_T) \) distribution.*
region due to the neutral fragment velocities. To obtain that ratio, we calculate a hypothetical TOF spectrum by superimposing the signal from NO (from O−NO photofission) and Br (from C−Br photofission) in the same spectrum, assuming each has equal partial ionization cross sections, so each has a time-of-flight distribution consistent with the $P(E_f)$’s shown for NO in Figure 2 and for Br in Figure 9. We use this calculation to predict the relative integrated signal from NO and from Br over the same time range (0−550 μs) that would be observed in the TOF spectra if they are produced in a 1:1 ratio, rather than scaling the fits to match the measured spectra. The high kinetic energy NO product is, as expected, discriminated against, so the actual integrated counts at NO* is divided by 3192, whereas the actual signal at Br* is divided by 8909. Although the partial ionization cross sections used here are accurate to 14%, the two respective contributions from Br and NO to the m/e = 79 TOF spectra and m/e = 30 TOF spectra overlap other signals in the spectra, so the uncertainty in this branching ratio is greater than 14%.

4. DISCUSSION

In this report, we focused on characterizing two of the primary photodissociation channels of BrCH$_2$CH$_2$ONO at 193 nm and the subsequent unimolecular dissociation channels of the nascent BrCH$_2$CH$_2$O radicals produced from the O−NO bond photofission. We also performed theoretical predictions on the possible subsequent unimolecular dissociation channels of the vibrationally excited CH$_2$CH$_2$ONO radicals resulting from primary C−Br bond photofission. This work follows two studies of BrCH$_2$CH$_2$ONO photodissociation at 351/355 nm by Wang et al. and Chhantyal-Pun et al. The only primary photodissociation channel of BrCH$_2$CH$_2$ONO detected upon photodissociation at 351 nm was O−NO bond fission. C−Br photofission and HBr photoelimination do not compete significantly with O−NO photofission at this excitation wavelength. Even though the presence of the Br substituent does not alter the primary photodissociation channels at 351/355 nm, one might expect C−Br photofission to compete with O−NO photofission at 193 nm, as alkyl bromides have an excited state that is repulsive in the C−Br bond at those higher energies.

In this study, our data taken at 193 nm show that both O−NO photofission and C−Br photofission are major primary photodissociation channels; HBr photoelimination is definitely not a significant primary photodissociation channel. The branching ratio between the O−NO photofission channel and the C−Br photofission channel is 3.9, indicating that O−NO bond photofission is still the dominant primary photodissociation channel. The O−NO photofission channel is similar to that in the known photochemistry of alkyl nitrites in the absorption band accessed at 193 nm. The primary O−NO photodissociation $P(E_f)$ at 193 nm peaks near 30 kcal/mol, as compared to 14 kcal/mol at 351 nm. This is partly due to the higher available energy at 193 nm: 112 kcal/mol at 193 nm as compared to 45 kcal/mol at 351 nm. The competing C−Br fission channel is facilitated by the bichromophoric nature of the excited state of BrCH$_2$CH$_2$ONO accessed at 193 nm. It is interesting to note that the absorption cross section of methyl nitrite and ethyl nitrite (CH$_3$ONO and CH$_3$CH$_2$ONO) is near 2.2 Mb, whereas the absorption cross-section is near ~0.6 Mb at 193 nm for CH$_3$Br and ~0.7 Mb for CH$_3$CH$_2$Br. The absorption cross sections are substantial in the single chromophore systems and these excited states are strongly repulsive along the O−NO dissociation coordinate and the C−Br fission coordinate, respectively. Thus, one might expect the bichromophore BrCH$_2$CH$_2$ONO to have an excited state of mixed character (a linear combination of two diabats, one from each excited electronic configuration) that would then result in a competition between C−Br and O−NO photofission.

The O−NO photofission channel at 193 nm produces BrCH$_2$CH$_2$O radicals. Our measured kinetic energy distribution allows us to estimate the internal energy distribution in the nascent BrCH$_2$CH$_2$O radicals (section 3.2.2). Due to the extra internal energy available for nascent BrCH$_2$CH$_2$O radicals at 193 nm than 351 nm, no stable BrCH$_2$CH$_2$O radicals are expected. Most of the radicals undergo subsequent dissociation to CH$_2$Br + H$_2$CO in agreement with the theoretical prediction on the ground electronic state of BrCH$_2$CH$_2$O and in accordance with our previous study at 351 nm. The translational energy distribution imparted during the secondary dissociation to CH$_2$Br + H$_2$CO is broader and peaks near 12 kcal/mol at 193 nm as compared to 5 kcal/mol at 351 nm. Radicals generated at both wavelengths may experience repulsive forces after the transition state at 16 kcal/mol in Figure 3, but the secondary $P(E_f)$ in Figure 4 evidence substantially more energy in translation than expected from a 7 kcal/mol exit barrier. This is likely due to the higher rotational energy of the BrCH$_2$CH$_2$O produced at 193 nm; the tangential velocity at the higher rotational energy can shift the $P(E_f)$ to larger energies. Some of the BrCH$_2$CH$_2$O radicals dissociate to H + Br$_2$CHO. Because the loss of an H atom does not change the velocity of the heavy Br$_2$CHO cofragment, we see three signals at m/e = 30, 79, and 29 that are momentum-matched to the NO cophotofragments. These signals cannot be from stable BrCH$_2$CHO radicals; they result rather from dissociative ionization of Br$_2$CHO from the H + Br$_2$CHO secondary channel.

In our previous study at 351 nm, we mentioned that Chhantyal-Pun et al. report strong spectroscopic evidence for a vinoxy radical product from the photodissociation of halogenated alkyl nitrites, including BrCH$_2$CH$_2$ONO. They attribute that signal to a competing channel in the dissociation of the nascent BrCH$_2$CH$_2$O radicals, a channel that forms vinoxy + HBr. Our previous study at 351 nm showed that vinoxy cannot be from this source because the signal at HBr is far too small to form in a 1:1 (or larger) ratio with vinoxy. In this study, we confirm this assumption again that there is insufficient HBr signal from HBr to assign the vinoxy signal to the BrCH$_2$CH$_2$O → vinoxy + HBr reaction.

In this study, we also estimated the vibrational energy distributions of the nascent trans-BrCH$_2$CH$_2$ONO radicals formed from the four conformers of the precursor. Some of the radicals may be stable to subsequent dissociation due to the large proportion of rotational energy. We have just begun a study of the secondary dissociation channels of CH$_3$CH$_2$ONO after C−Br bond fission at 193 nm, in which we investigate several sources of the signal at m/e = 42 detected with electron bombardment ionization and the tiny vinoxy signal at m/e = 43 detected with photoionization.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information includes the optimized geometries of the four conformers of BrCH$_2$CH$_2$ONO used to estimate the angular momentum of the CH$_3$CH$_2$ONO radicals resulting from C−Br photofission, and the J distributions of the trans-
CH$_3$CH$_2$ONO radicals from each conformer as a function of total internal energy in the radical. The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpca.5b04162.

AUTHOR INFORMATION

Corresponding Author
E-mail: L-Butler@uchicago.edu.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy, under Grant DE-FG02-92ER14305 (L.J.B.). T.D.R. was supported by the Arnold and Mabel Beckman Foundation as a Beckman Scholar.

REFERENCES

NOTE ADDED AFTER ASAP PUBLICATION

This article was published ASAP on July 13, 2015, with an incorrect version of Figure 10. The corrected article was published ASAP on July 23, 2015.