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A. Euler Angles and Transformations of Coordinate 3-Space

Define the three rotations they show on the Wiki
web page animation for Euler angles:

T.(a) =rotate by an angle a about the z-axis
This moves what was a vector along the x axis to
a new position, the vector N (line of nodes).

Tn(P) = rotate by an angle 3 about fixed vector N
This moves what was a vector along the z-axis to
a new position, the Z-axis.

Tz(y) = rotate by an angle y about the Z-axis
This moves what was a vector along the vector N
to a new position, the X-axis.

Since the unit vectors along the coordinate axes of the blue coordinate system are:

1 0 0
X = (0) , Yy = (1) and Z = (O) . Let’s call the vector v, written in the blue coordinate

0 0 1
system basis, vz 5 7

Likewise, let’s call the SAME vector v, but written in the red coordinate system basis,
V%7 7). We wish to derive the matrix A that changes the coordinates of v in the [X, 7, 7]
coordinate system to the coordinates of vin the [ X, ¥, Z ] coordinate system.

Viz72) = A Vg
The matrix T given in eqn. 8 of the paper is A1, as our code requires converting the
coordinates of a vector in the red coordinate system to its coordinates in the blue
coordinate system.

The red coordinate system is obtained from the blue coordinate system by executing the
following rotations in the order given:

T.(a) = rotation by an angle o about the z axis (right hand rule gives direction)

Tn(P) = rotation by an angle 3 about the N, the line of nodes

Tz(y) = rotation by an angle y about the Z axis.




Note: The transformation T,(a) here does not equal the matrix transformation R, ()
used in mathematical methods texts such as that by Arfken. The matrix R,(a) in Arfken
is actually (T.(a)) 1, a matrix for a rotation by —-a around the z-axis. To see how R,(a) =
cosa sina 0 1
(— sina cosa O) rotates a vector, let it rotate ¥ = (0) to see what it does.
0 0 1 0
cosa sina 0 1 cosa CoS —«a
(— sina cosa O) (O) = <—sin 0() = <sin —0() . Thus, R,(a) rotates by an angle -a
0 0 1 0 0 0
about the fixed z axis. A geometric derivation (courtesy of Lynne Butler) for the formula
for A in terms of the Euler angles follows. The final matrix A is the same as in
http://mathworld.wolfram.com/EulerAngles.html but the derivation given below uses the
physical transformations that rotate vectors, like T-(a), connecting more clearly with the Wiki
animation http://en.wikipedia.org/wiki/Euler_angles

cos

The coordinates of N, a vector along the line of nodes, is N = (sin a) with a as shown in

0
1

the figure above. If we rotate ¥ = (0) by an angle a about the z axis, the new vector
0

cos a cosa —sina 0\ /1 cos a
should be N = (sin a) . Calculating T;(a)X =| sina cosa O (0) = (sin a) Good.
0 0 0 1/ \0 0

So the code in our paper needs to calculate the coordinates of a vector v in the red
coordinate system, if we are given the coordinates of v in the blue coordinate system.

To begin the derivation of the expression for A given in eqn. 8 of the paper, let’s define a
few matrices:

T.(a) = rotation by an angle o about the z axis
cosa —sina 0
=|sina cosa O
0 0 1

Tx(p) = rotation by an angle § about the x axis
1 0 0
= (O cosf —sin ,8)
0 sinff cosp
And one more we need badly:

Tn(P) = rotation by an angle 3 about N, a vector along the line of nodes



Importantly this rotation matrix is the product of three matrices we have already
introduced:

Tn(B) =T, (o) T«(B) (T ()"

1
To see that this is true, consider that N = T (o) (0) .

0
Clearly, a rotation by the angle § about N should leave the vector N unchanged. So let’s see if

the matrix Tn(B) = T, () T«(B) (T, ()" does this below.

Tn(B) N
=T, (o) T«(B) (T,())" N

1
=T,(e) T() (T,())" T, () (o)

. 0
=T (o) T«(B) <0>
0

1 0 0 1
=T, (o) (0 cosfS —sin ﬁ) (O)
0 sinff cosp 0

1
=T,() (0)
0

=N Good.

Finally, we need the final rotation described above, Tz(y). The unit vector along the Z-axis
0

is calculated by beginning with a unit vector on the z axis, (0) , then executing a rotation of o
1

about the z axis, T (o) , then a rotation of an angle p about the line of nodes, Tn(pB). So Z =

Tn(B) T,(v) Z. Thus a rotation through an angle y around the Z axis , with a similar
argument as that above for Tn(p), is:

cosy —siny 0

Tz(y) = Tn(B) T, (o) (Sin)/ cosy 0) (Tn(B) T (o))"
0 0 1

Let’s rewrite this:

cosy —siny 0
Tz(y) = Tn(B) T, (@) (Sin y cosy 0) (Tn(B) T (o))"
0 0 1



cosy —siny 0
TL(G') TX(B) (TL(G'))-I Tz(a) (Sin Y cosy 0) (Tz(a) TX(B) (TL(G))-I TL(G'))-I
0 0 1

cosy —siny 0

T, (o) T«(B) (siny cosy O) (T, (o) T«(B) )"
0 0 1

=T, (a) Tx(B) Tu(y) (T () T<(B))"

So the matrix that maps the unit vectors along the blue coordinate axes, ¥, y and Z to
the unit vectors along the red coordinate axes X, Y, and Z is the product T =
Tz(y) Tn(P) T2(c). We get a simple expression for T below:

T2(y) Tn(B) T2(@) = T2(v) T (@) T«(B) (T ()" To()

Tz(y) T (o) T«(B)

T,(a) T«(B) T(y) (T,(c) Tx(B))" T (o) Tu(P)
T (o) Tx(B) T2(v)

Finally, we find the matrix A that changes the coordinates of a vector v in the [%, 7, Z]
coordinate system to the coordinates of vin the [ X, ¥, Z ] coordinate system.

Itis T, the inverse of T,(a) Tx(B) T-(y) -
Thus, A = (T, (o) Tx(B) Tz(y)) ! (see footnote! below for justification)
= (T2(v))H(T(B)) (T ()

cosy siny 0\ /1 0 0 cosa sina 0
=| —siny cosy 0][0 cosp sinf || —sina cosa 0

0 0 1/ \0 —sinf cospf 0 0 1

—cosasiny —sinacosffcosy —sinasiny +cosacosfcosy sinfcosy
sina sin 8 —cosasinf cosf

( cos a cosy — sina cos § siny sina cosy + cosa cos ff siny sinﬁsiny)

The inverse of this matrix (A1 = T) changes the coordinates of a vector vinthe [ X, Y, 7 ]
coordinate system to the coordinates of v in the [%, 7, Z] coordinate system (see eqn. 8).

X X
1 Given that T= Tz(y) Tn(B) T2(a), so that T% = X, T9=Y, T2=Z, show that <Y>=T'1<y>.
YA Z
IfXX+YY+Z7 = xx+yy+zZ (i.e., the same vector in two different coordinate systems),

X X
then <Y>=X9?+Y37+Zz“ = XT1X + YTV + ZT1Z = TY(XX+Y YV +Z2)= T (xR +yP+z2)= T'1<y>.
Z Z



B. Fitting Chloroacetone Data

B.1 Results

We used our algorithm to fit the angular distribution measured for the ketene photofragment formed by
the photodissociation of chloroacetone to CH3C(O)CH, + Cl and secondary dissociation of the radical to
ketene and methyl. The distribution of relative velocity vectors imparted to the CHjz and ketene produced
in the secondary dissociation was reported in Refs. 1 and 2. Using this and an isotropic secondary angular
distribution I(620) gave a good fit to the scattering data using CMLAB2. Thus, we retained this for our fits
presented below. The net ketene angular distribution is not isotropic, as the primary C — Cl photofission is
not, so we tested our algorithm by using it to fit the B(vy,t) output by BASEX.3

We attempted to use the experimental Cl B10(E7).? One difficulty arose in accounting for the angular
distribution of the background in the Cl atom velocity map imaging data taken with REMPI detection. To
properly account for the primary Cl photofragment 10, we determined the fraction f of ground state Cl
(*P3 ) that was produced by a combination of photodissociation at 193 nm and photoionization at 118 nm
by subtracting the background Cl signal produced by 193 nm laser alone. The background Cl signal data is

isotropic (shown in Fig. S1) which is represented by Bpackground = 0- Using the equation

,Bmeasured - f ,Bdesired signal + (1 - f ) ,Bbackground 1)

and that Bpackground = 0, we find that

Bdesired signal = Peosured, 2)
f

We then performed a linear fit of Beasured (E10) for Cl, which is shown in Fig. S2. The desired 8, shown
in Fig. S3, was then obtained by dividing the measured beta in Fig. S2 (which includes a contribution for
the background) by the fraction of the signal due to Cl (2P5 /s2) (Fig. S4).

The B(Ej0) we entered into our program was constant at § = —0.0800 between 0 and 6.77 kcal/mol
(100,000 cm/s), and then follows the data shown in Fig. S3. We only have data with a good signal-to-noise
ratio from 6.77 kcal/mol to 21.9 kcal/mol (180,000 cm/s), so we used a sixth order fit (R> = 0.9999) to
match the trend in Fig. S3 from 21.9 kcal/mol (180,000 cm/s) to 26 kcal/mol. Setting B = —0.0800 from 0
to 6.77 kcal/mol is within the signal-to-noise for energies less than 6.77 kcal/mol (100,000 cm/s). The net

fit for this treatment of the primary angular distribution given to the measured ketene angular distribution
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data is shown in Fig. S5.

B.2 Discussion

We attempted to fit the dissociation of CH3C(O)CH,; — CHj 4+ C(O)CH, using the 1/ sin(0) distribu-
tion, but this always resulted in a two-peaked P(vy) that does not match our experimental data. Non-
coplanar forces in the exit channel likely smeared the 1/ sin(f) angular distribution.

We considered two possible sources of error to understand why we were unable to obtain a good fit
to the measured ketene angular distribution using the experimentally measured anisotropy of the primary
C — Cl bond fission from the two step model. We presume the problem arises from the fact that the signal-
to-noise ratio for a large portion of the Cl atom data was too low to extract an accurate speed dependent
anisotropy parameter to use for the primary dissociation. Subtracting the isotropic background in the
anisotropy data is important to do and we give the methodology here, but it introduces a large amount
of experimental error because of the poor signal-to-noise ratio.

We also considered the possibility that the CI signal included a contribution from the dissociation of
C(O)CH;Cl (produced by another primary photofission channel, reaction 1c in Ref. 1) to Cl + ketene. This
would contaminate the speed and anisotropy data. As seen in Fig. 2 in Ref. 1, the methyl signal attributed
to the dissociation of chloroacetone to CHj + C(O)CH,Cl has velocities greater than 360,000 cm /s, which
corresponds to 27.76 kcal/mol of relative translational energy imparted to the primary photofragments.

Using conservation of energy

Eint,C(O)CHzCl =hv + Eint,chloroacetone — Dy (C - Cl) - Eint,CH3 —Er 3)

and assuming the methyl product does not carry away any internal energy, we can calculate the inter-
nal energy of C(O)CH,Cl radicals that correspond to the slowest methyl produced by this channel. At
193.3 nm, hv = 147.8kcal/mol, E;;; chioroacetone at the nozzle temperature of 80°C is 4.8 kcal/mol, and
Do(C — Cl) is 82.2 kcal/mol at the G3/B3LYP level of theory.! The endoergicity of the dissociation of
C(O)CH,Cl — C(O)CH, + Cl is 21.68 kcal/mol, calculated at the G4//B3LYP/6-311++G(3df,2p) level of
theory. Thus, this dissociation is allowed because there is 20.96 kcal/mol of internal energy in C(O)CH,Cl
above the endoergicity if methyl is given a speed of 360,000 cm/s. This channel is therefore a potential
source of ketene and Cl atoms, but since the secondary dissociation has no barrier beyond the endoergicity,

we assume that little to no additional velocity should be imparted to Cl + ketene. This allows us to predict



the speed of the resulting Cl and ketene cofragments. Since all methyl produced by the primary photodis-
sociation channel have velocities between 360,000 cm/s and 440,000 cm/s, the Cl or ketene signal produced
in secondary dissociaiton would be found between 70,000-86,000 cm/s. These speeds were not in the range
of Cl atom speeds used to determine the experimental B(v10) for Cl, so this did not affect our analysis. Ad-
ditionally, the dissociation of C(O)CH,Cl — CO + CH,Cl has a lower barrier height, 18.60 kcal/mol, and
is endoergic by only 3.92 kcal /mol as calculated at the G4/ /B3LYP/6-311++G(3df,2p) level of theory, so we

expect any unstable C(O)CH,Cl photofragment to dissociate to CO + CH,Cl rather than to Cl + ketene.
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Figure S1: Anisotropy data for background at m/e = 35 taken with 193 nm light only, which was first
reported in Ref. 2. It is isotropic.
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Figure S2: The speed dependence of the anisotropy parameter measured for the total signal (Cl P, /2) and
background) at m/e = 35. The data in open circles was reported in the supplemental documents of Ref.
2. The linear fit shown in black has the equation B(vc;) = 3.83 x 10~%v + 0.339. This fit is subsequently
corrected (see Fig. S3) for the background contribution from the 193 nm data only (no REMPI laser; shown
in Fig. 54).
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Figure S3: The corrected experimental B(v) for Cl (>P3,), obtained by dividing by the linear fit shown in
Fig. S2 by the fraction of signal from Cl (*P;,,) photofragments detected with REMPL This corrects the
measured B(vc;) presented in Fig. S2 for the contribution from an isotropic background from the 193 nm
laser only.
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Figure S4: The fraction f(v¢;) of ground state Cl (p, /2) that is produced by photodissociation at 193 nm
and detected with REMPI. The linear fit is shown in black and has the equation f(v) = 2.35x10~%v + 0.331
(inm/s).
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Figure S5: The angular distribution of the ketene secondary product from chloroacetone at 193 nm. Data
from Ref. 2 is shown in open circles. The fit shown in solid line is calculated by the two-step algorithm pre-
sented herein. This fit uses the background corrected experimental B(vc;) shown in Fig. S3 and described
in the text. The other input parameters used to calculate the fit were the portion of the primary C — Cl
photofission P(Et) that generate unstable radicals (Ref. 2, Fig. 5), the secondary P(Et) given in Ref. 2, Fig.
12, and an isotropic secondary angular distribution. The net speed distribution of the ketene is well fit in
Fig. 1 of Ref. 1. The fit shown in this figure is the best fit we can obtain from the experimental Cl atom data.
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